Oscillatory property of solutions of second order differential equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations

The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Oscillatory Behavior of Second Order Neutral Differential Equations

Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

متن کامل

Oscillatory and Asymptotic Behavior of Solutions of Second Order Neutral Delay Differential Equations with “maxima”

The authors establish some new criteria for the oscillation and asymptotic behavior of all solutions of the equation. (a(t)(x(t) + p(t)x(τ(t)))) + q(t) max [σ(t),t] x(s) = 0, t ≥ t0 ≥ 0, where a(t) > 0, q(t) ≥ 0, τ(t) ≤ t, σ(t) ≤ t, α is the ratio of odd positive integers, and ∫∞ 0 dt a(t) < ∞. Examples are included to illustrate the results. AMS Subject Classification: 34K11, 34K99

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1970

ISSN: 0040-8735

DOI: 10.2748/tmj/1178242728